Computer data storage, often called storage or memory, refers to computer components, devices, and recording media that retain digital data used for computing for some interval of time. Computer data storage provides one of the core functions of the modern computer, that of information retention. It is one of the fundamental components of all modern computers, and coupled with a central processing unit (CPU, a processor), implements the basic computer model used since the 1940s. In contemporary usage, memory usually refers to a form of semiconductor storage known asrandom-access memory (RAM) and sometimes other forms of fast but temporary storage. Similarly, storage today more commonly refers to mass storage — optical discs, forms ofmagnetic storage like hard disk drives, and other types slower than RAM, but of a more permanent nature. Historically, memory and storage were respectively called main memory andsecondary storage. The terms internal memory and external memory are also used. Many different forms of storage, based on various natural phenomena, have been invented. So far, no practical universal storage medium exists, and all forms of storage have some drawbacks. Therefore a computer system usually contains several kinds of storage, each with an individual purpose. A digital computer represents data using the binary numeral system. Text, numbers, pictures, audio, and nearly any other form of information can be converted into a string of bits, or binary digits, each of which has a value of 1 or 0. The most common unit of storage is the byte, equal to 8 bits. A piece of information can be handled by any computer whose storage space is large enough to accommodate the binary representation of the piece of information, or simply data. For example, using eight million bits, or about one megabyte, a typical computer could store a short novel. Traditionally the most important part of every computer is the central processing unit (CPU, or simply a processor), because it actually operates on data, performs any calculations, and controls all the other components. Without a significant amount of memory, a computer would merely be able to perform fixed operations and immediately output the result. It would have to be reconfigured to change its behavior. This is acceptable for devices such as desk calculators or simple digital signal processors. Von Neumann machines differ in that they have a memory in which they store their operating instructions and data. Such computers are more versatile in that they do not need to have their hardware reconfigured for each new program, but can simply bereprogrammed with new in-memory instructions; they also tend to be simpler to design, in that a relatively simple processor may keep statebetween successive computations to build up complex procedural results. Most modern computers are von Neumann machines. In practice, almost all computers use a variety of memory types, organized in a storage hierarchy around the CPU, as a trade-off between performance and cost. Generally, the lower a storage is in the hierarchy, the lesser its bandwidth and the greater its access latency is from the CPU. This traditional division of storage to primary, secondary, tertiary and off-line storage is also guided by cost per bit. Primary storage (or main memory or internal memory), often referred to simply as memory, is the only one directly accessible to the CPU. The CPU continuously reads instructions stored there and executes them as required. Any data actively operated on is also stored there in uniform manner. Historically, early computers used delay lines, Williams tubes, or rotatingmagnetic drums as primary storage. By 1954, those unreliable methods were mostly replaced by magnetic core memory, which was still rather cumbersome. Undoubtedly, a revolution was started with the invention of atransistor, that soon enabled then-unbelievable miniaturization of electronic memory via solid-state silicon chip technology. This led to a modern random-access memory (RAM). It is small-sized, light, but quite expensive at the same time. (The particular types of RAM used for primary storage are also volatile, i.e. they lose the information when not powered). As shown in the diagram, traditionally there are two more sub-layers of the primary storage, besides main large-capacity RAM: Main memory is directly or indirectly connected to the central processing unit via a memory bus. It is actually two buses (not on the diagram): an address bus and a data bus. The CPU firstly sends a number through an address bus, a number called memory address, that indicates the desired location of data. Then it reads or writes the data itself using the data bus. Additionally, a memory management unit (MMU) is a small device between CPU and RAM recalculating the actual memory address, for example to provide an abstraction of virtual memory or other tasks. As the RAM types used for primary storage are volatile (cleared at start up), a computer containing only such storage would not have a source to read instructions from, in order to start the computer. Hence, non-volatile primary storage containing a small startup program (BIOS) is used to bootstrap the computer, that is, to read a larger program from non-volatile secondary storage to RAM and start to execute it. A non-volatile technology used for this purpose is called ROM, for read-only memory (the terminology may be somewhat confusing as most ROM types are also capable of random access). Many types of "ROM" are not literally read only, as updates are possible; however it is slow and memory must be erased in large portions before it can be re-written. Some embedded systems run programs directly from ROM (or similar), because such programs are rarely changed. Standard computers do not store non-rudimentary programs in ROM, rather use large capacities of secondary storage, which is non-volatile as well, and not as costly. Recently, primary storage and secondary storage in some uses refer to what was historically called, respectively, secondary storage andtertiary storage.[1] Secondary storage (or external memory) differs from primary storage in that it is not directly accessible by the CPU. The computer usually uses its input/output channels to access secondary storage and transfers the desired data using intermediate area in primary storage. Secondary storage does not lose the data when the device is powered down—it is non-volatile. Per unit, it is typically also two orders of magnitude less expensive than primary storage. Consequently, modern computer systems typically have two orders of magnitude more secondary storage than primary storage and data is kept for a longer time there. In modern computers, hard disk drives are usually used as secondary storage. The time taken to access a given byte of information stored on a hard disk is typically a few thousandths of a second, or milliseconds. By contrast, the time taken to access a given byte of information stored in random access memory is measured in billionths of a second, or nanoseconds. This illustrates the very significant access-time difference which distinguishes solid-state memory from rotating magnetic storage devices: hard disks are typically about a million times slower than memory. Rotating optical storage devices, such as CD and DVD drives, have even longer access times. With disk drives, once the disk read/write head reaches the proper placement and the data of interest rotates under it, subsequent data on the track are very fast to access. As a result, in order to hide the initial seek time and rotational latency, data are transferred to and from disks in large contiguous blocks. When data reside on disk, block access to hide latency offers a ray of hope in designing efficient external memory algorithms. Sequential or block access on disks is orders of magnitude faster than random access, and many sophisticated paradigms have been developed to design efficient algorithms based upon sequential and block access . Another way to reduce the I/O bottleneck is to use multiple disks in parallel in order to increase the bandwidth between primary and secondary memory.[2] Some other examples of secondary storage technologies are: flash memory (e.g. USB flash drives or keys), floppy disks, magnetic tape, paper tape, punched cards, standalone RAM disks, and Iomega Zip drives. The secondary storage is often formatted according to a file system format, which provides the abstraction necessary to organize data into filesand directories, providing also additional information (called metadata) describing the owner of a certain file, the access time, the access permissions, and other information. Most computer operating systems use the concept of virtual memory, allowing utilization of more primary storage capacity than is physically available in the system. As the primary memory fills up, the system moves the least-used chunks (pages) to secondary storage devices (to aswap file or page file), retrieving them later when they are needed. As more of these retrievals from slower secondary storage are necessary, the more the overall system performance is degraded. Tertiary storage or tertiary memory,[3] provides a third level of storage. Typically it involves a robotic mechanism which will mount (insert) and dismount removable mass storage media into a storage device according to the system's demands; this data is often copied to secondary storage before use. It is primarily used for archival of rarely accessed information since it is much slower than secondary storage (e.g. 5–60 seconds vs. 1-10 milliseconds). This is primarily useful for extraordinarily large data stores, accessed without human operators. Typical examples include tape libraries and optical jukeboxes. When a computer needs to read information from the tertiary storage, it will first consult a catalogdatabase to determine which tape or disc contains the information. Next, the computer will instruct arobotic arm to fetch the medium and place it in a drive. When the computer has finished reading the information, the robotic arm will return the medium to its place in the library. Off-line storage is a computer data storage on a medium or a device that is not under the control of a processing unit.[4] The medium is recorded, usually in a secondary or tertiary storage device, and then physically removed or disconnected. It must be inserted or connected by a human operator before a computer can access it again. Unlike tertiary storage, it cannot be accessed without human interaction. Off-line storage is used to transfer information, since the detached medium can be easily physically transported. Additionally, in case a disaster, for example a fire, destroys the original data, a medium in a remote location will probably be unaffected, enabling disaster recovery. Off-line storage increases general information security, since it is physically inaccessible from a computer, and data confidentiality or integrity cannot be affected by computer-based attack techniques. Also, if the information stored for archival purposes is accessed seldom or never, off-line storage is less expensive than tertiary storage. In modern personal computers, most secondary and tertiary storage media are also used for off-line storage. Optical discs and flash memory devices are most popular, and to much lesser extent removable hard disk drives. In enterprise uses, magnetic tape is predominant. Older examples are floppy disks, Zip disks, or punched cards. Storage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressibility. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance. The impact of a storage device on the environment. As of 2008, the most commonly used data storage technologies are semiconductor, magnetic, and optical, while paper still sees some limited usage. Some other fundamental storage technologies have also been used in the past or are proposed for development. Semiconductor memory uses semiconductor-based integrated circuits to store information. A semiconductor memory chip may contain millions of tiny transistors or capacitors. Both volatile and non-volatile forms of semiconductor memory exist. In modern computers, primary storage almost exclusively consists of dynamic volatile semiconductor memory or dynamic random access memory. Since the turn of the century, a type of non-volatile semiconductor memory known as flash memory has steadily gained share as off-line storage for home computers. Non-volatile semiconductor memory is also used for secondary storage in various advanced electronic devices and specialized computers. Magnetic storage uses different patterns of magnetization on a magnetically coated surface to store information. Magnetic storage is non-volatile. The information is accessed using one or more read/write heads which may contain one or more recording transducers. A read/write head only covers a part of the surface so that the head or medium or both must be moved relative to another in order to access data. In modern computers, magnetic storage will take these forms: In early computers, magnetic storage was also used for primary storage in a form of magnetic drum, or core memory, core rope memory, thin-film memory, twistor memory or bubble memory. Also unlike today, magnetic tape was often used for secondary storage. Optical storage, the typical Optical disc, stores information in deformities on the surface of a circular disc and reads this information by illuminating the surface with a laser diode and observing the reflection. Optical disc storage is non-volatile. The deformities may be permanent (read only media ), formed once (write once media) or reversible (recordable or read/write media). The following forms are currently in common use:[12] Magneto-optical disc storage is optical disc storage where the magnetic state on a ferromagnetic surface stores information. The information is read optically and written by combining magnetic and optical methods. Magneto-optical disc storage is non-volatile, sequential access, slow write, fast read storage used for tertiary and off-line storage. 3D optical data storage has also been proposed. Paper data storage, typically in the form of paper tape or punched cards, has long been used to store information for automatic processing, particularly before general-purpose computers existed. Information was recorded by punching holes into the paper or cardboard medium and was read mechanically (or later optically) to determine whether a particular location on the medium was solid or contained a hole. A few technologies allow people to make marks on paper that are easily read by machine—these are widely used for tabulating votes and grading standardized tests. Barcodes made it possible for any object that was to be sold or transported to have some computer readable information securely attached to it. A secondary or tertiary storage may connect to a computer utilizing computer networks. This concept does not pertain to the primary storage, which is shared between multiple processors in a much lesser degree. Large quantities of individual magnetic tapes, and optical or magneto-optical discs may be stored in robotic tertiary storage devices. In tape storage field they are known as tape libraries, and in optical storage field optical jukeboxes, or optical disk libraries per analogy. Smallest forms of either technology containing just one drive device are referred to as autoloaders or autochangers. Robotic-access storage devices may have a number of slots, each holding individual media, and usually one or more picking robots that traverse the slots and load media to built-in drives. The arrangement of the slots and picking devices affects performance. Important characteristics of such storage are possible expansion options: adding slots, modules, drives, robots. Tape libraries may have from 10 to more than 100,000 slots, and provide terabytes or petabytes of near-line information. Optical jukeboxes are somewhat smaller solutions, up to 1,000 slots. Robotic storage is used for backups, and for high-capacity archives in imaging, medical, and video industries. Hierarchical storage managementis a most known archiving strategy of automatically migrating long-unused files from fast hard disk storage to libraries or jukeboxes. If the files are needed, they are retrieved back to disk.
The contemporary distinctions are helpful, because they are also fundamental to the architecture of computers in general. The distinctions also reflect an important and significant technical difference between memory and mass storage devices, which has been blurred by the historical usage of the term storage. Nevertheless, this article uses the traditional nomenclature.Contents
[hide][edit]Purpose of storage
[edit]Hierarchy of storage
[edit]Primary storage
[edit]Secondary storage
[edit]Tertiary storage
[edit]Off-line storage
[edit]Characteristics of storage
[edit]Volatility
[edit]Differentiation
[edit]Mutability
[edit]Accessibility
[edit]Addressability
[edit]Capacity
[edit]Performance
[edit]Environmental Impact
[edit]Fundamental storage technologies
[edit]Semiconductor
[edit]Magnetic
[show] [edit]Optical
[show] [edit]Paper
[show] [edit]Uncommon
[edit]Related technologies
[edit]Network connectivity
[edit]Robotic storage
[edit]See also
[edit]Primary storage topics
[edit]Secondary, tertiary and off-line storage topics
[edit]Data storage conferences
Wednesday, May 5, 2010
Computer data storage
Magnetic storage media
Optical storage media
Paper data storage media
Posted by Ðarrєи Liм at 5:41 PM 0 comments
Subscribe to:
Posts (Atom)