BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

Tuesday, June 29, 2010

Computer Network

Computer networking is the engineering discipline concerned with the communication between computer systems or devices. A computer network is any set of computers or devices connected to each other with the ability to exchange data.[1] Computer networking is sometimes considered a sub-discipline of telecommunications, computer science, information technology and/or computer engineering since it relies heavily upon the theoretical and practical application of these scientific and engineering disciplines. The three types of networks are: the Internet, the intranet, and the extranet. Examples of different network methods are:
  • Local area network (LAN), which is usually a small network constrained to a small geographic area. An example of a LAN would be a computer network within a building.
  • Metropolitan area network (MAN), which is used for medium size area. examples for a city or a state.
  • Wide area network (WAN) that is usually a larger network that covers a large geographic area.
All networks are interconnected to allow communication with a variety of different kinds of media, including twisted-pair copper wire cable, coaxial cable, optical fiber, power lines and various wireless technologies.[2] The devices can be separated by a few meters (e.g. via Bluetooth) or nearly unlimited distances (e.g. via the interconnections of the Internet[3]). Networking, routers, routing protocols, and networking over the public Internet have their specifications defined in documents called RFCs.[4]

Network cards such as this one can receive data at high
rates over transmit and various types of network cables.
This card is a 'Combo' card which supports three cabling standards.

History of computer networks

Before the advent of computer networks that were based upon some type of telecommunicationssystem, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behaviors seen in today's Internet were demonstrably present in the nineteenth century and arguably in even earlier networks using visual signals.

In September 1940 George Stibitz used a teletype machine to send instructions for a problem set from his Model at Dartmouth College in New Hampshire to his Complex Number Calculator in New York and received results back by the same means. Linking output systems like teletypes to computers was an interest at the Advanced Research Projects Agency (ARPA) when, in 1962, J.C.R. Licklider was hired and developed a working group he called the "Intergalactic Network", a precursor to the ARPANet.

In 1964, researchers at Dartmouth developed the Dartmouth Time Sharing SystemMIT, a research group supported by General Electric and Bell Labs used a computer DEC's to route and manage telephone connections. for distributed users of large computer systems. The same year, at

Throughout the 1960s Leonard Kleinrock, Paul Baran and Donald Davies independently conceptualized and developed network systems which used datagrams or packets that could be used in a network between computer systems.

1965 Thomas Merrill and Lawrence G. Roberts created the first wide area network (WAN).

The first widely used PSTN switch that used true computer control was the Western Electric introduced in 1965.

In 1969 the University of California at Los Angeles, SRI (in Stanford), University of California at Santa Barbara, and the University of Utah were connected as the beginning of the ARPANET network using 50 kbit/s circuits. Commercial services using X.25 were deployed in 1972, and later used as an underlying infrastructure for expanding TCP/IP networks.

Computer networks, and the technologies needed to connect and communicate through and between them, continue to drive computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.

Today, computer networks are the core of modern communication. All modern aspects of the Public Switched Telephone Network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade, and this boom in communications would not have been possible without the progressively advancing computer network.

Differences Between Internet , Intranet and Extranet

Picture," it also offers a global perspective. By providing connectivity to anyone with a computer and a telephone line, the Internet is the networking breakthrough of our lifetime. It includes everything from universal e-mail to transactions between individuals and between companies. Of course, this now includes commerce as well as information exchanges and new directories (such as search engines) that provide phone book-style accessibility for digital communications.

Some of the most important results of this networking revolution are new forms of marketing and outreach, new connections between customers and collaborators, new sources for news and research, and opportunities for new kinds of distribution of products (as well as of information). But because the Internet is the broadest information super-highway, it lacks some of the security and privacy that's needed for the internal workings of business organizations. Advanced features like multimedia are also more likely to be limited because most individuals are still using dial-up connections and, as a result, have very limited data bandwidth.

INTRANETS

Intranets are new kinds of internal networks. Think of "Intra" as it is used in Intramural sports. Intranets tend to resemble the architecture of a closed-circuit video network as opposed to the Internet which is more like broadcasting in terms of its reach. Intranets are used for more private communications, connectivity among work groups and larger organizations. For example, some companies use Intranets to offer corporate services such as benefits programs and other kinds of corporate communications. Also, Intranets enable information sharing that empowers employees who might otherwise be left "out of the loop." (See "Groupware" below.)

Because of their limited geographic range, Intranets offer more bandwidth, frequently Ethernet's 10Kbps or better. As a result of this bandwidth and the "closed loop" structure, more advanced networking features such as video and multimedia, as well as more technological control, are possible. For example, a company can specify that a specific web browser and even a specific version of that browser (licensed by the company) be used on its network. This enables a consistent and more dependable user experience than is possible on the Internet. Even Internet related services such as Pointcast can be customized for a particular company and its Intranet.

EXTRANETS

Extranets are a more complex implementation of the wired world. Just because an employee is telecommuting doesn't mean she shouldn't have access to the company Intranet. Sales people on the road are just as critical to a corporation's success as those who sit behind desks. And in today's world of virtual work groups, suppliers and other vendors are frequently critical members of the team and they may need an insider's degree of access. Extranet's provide these important networking "bridges" by combining the Internet with the Intranet.

By extending the corporate network to include the Internet, team members get the best of both worlds -- mobility with exclusivity. Because of the necessary security involved, Extranets frequently require the development of custom applications. For example, in order to give a remote sales person access to corporate sales statistics, the user needs remote access to a database that cannot be made visible to the competition. Most often, for something this sensitive, encryption is involved because password protection is not sufficient.

In most cases, Extranets do not involve high bandwidth applications like video and multimedia because of the limited bandwidth of remote users who most frequently use dial up connections.

Ethernet is the most widely-installed local area network ( LAN) technology. Specified in a standard, IEEE 802.3, Ethernet was originally developed by Xerox from an earlier specification called Alohanet (for the Palo Alto Research Center Aloha network) and then developed further by Xerox, DEC, and Intel. An Ethernet LAN typically uses coaxial cable or special grades of twisted pair wires. Ethernet is also used in wireless LANs. The most commonly installed Ethernet systems are called 10BASE-T and provide transmission speeds up to 10 Mbps. Devices are connected to the cable and compete for access using a Carrier Sense Multiple Access with Collision Detection (CSMA/CD ) protocol.

Fast Ethernet or 100BASE-T provides transmission speeds up to 100 megabits per second and is typically used for LAN backbone systems, supporting workstations with 10BASE-T cards. Gigabit Ethernet provides an even higher level of backbone support at 1000 megabits per second (1 gigabit or 1 billion bits per second). 10-Gigabit Ethernet provides up to 10 billion bits per second.

Ethernet was named by Robert Metcalfe, one of its developers, for the passive substance called "luminiferous (light-transmitting) ether" that was once thought to pervade the universe, carrying light throughout. Ethernet was so- named to describe the way that cabling, also a passive medium, could similarly carry data everywhere throughout the network.

Perbazaan Antara 3 Topologi ( Star , Bus , Ring )

Topolgi bus

Tpologi jaringan bus meruapakan beberapa simpul/node dihubungkan dg jalur data (bus).topolgi ini menyediakan 1 saluran untuk komunikasisemua perangkat shgg setiap perangkat harus bergantian seluran tersebut.hanya ada 2perangkat yg saling berkomunikasi dalam 1 saat.tiap node dapat melakukan tugas-tugas dan operasi yg berbeda.Untuk mengifisiensi penggunaan jaringan digunukan metode CSMA/CD(Carrier Sense Multiplay Access/Collision Detected)yg mernguragi masa tenggang(saluran kosong)dg mendeteksi tabrakan informasi.

Keuntungan Topolgi Bus

1.Mengurangi kabel&jarak LAN tidak terbatas.
2.Biaya instalasi sgt murah.
3.Mudah untuk menambah atau mengurangkan kompuer &nod

Kekurangan Topologi Bus

1.Memerlukan terminator untuk kedua ujng kabel tulang belakang
2.Perlu pengulang (repeater0jika LAN jauh.
3.Jika kabel tulabg belakang (backbone)/mana-mana nodnya bermasalah rangkaian tidak dapat berfungsi.

Topologi Ring

Mempunyai satu titik kesalahan,terletak pd hub.jika pusat hub mengalami kegagalan,maka seluruh jaringan akan gagal beroperasi.Memerlukan alat pd central poin untuk membroadcast ulang atau pergantian traffic jaringan (switch network rraffic).Penempatan kabel yg diguib\nakan ring menggunakan desain yg sederhanh,pada topologi ring,setiap computer yg pertama.

Keuntungan Topologi Ring

1.Setiap computer hak akses yg sama terhadap token,sehingga tidak akan ada computer yg memonopoli jaringan.
2.Data yg mengalir dalam satu arah sehingga terjadinya collision dapat dihindarkan.

Kekurangan Topolgi ring

1.Apabila ada satu computer dlm ring yg gagal berfungsi,maka akan mempengaruhi keseluruhan jaringan.
2.Sulit mengatsi kerusakan di jaringan yg menggunakan topolgo ring.
3Menambah atau menguirangikomputer akan mengacaukaun jaringan.

Topologi Star

Dalam topologi star,semua kabel di hubungkan dr computer-computer ke lokasi pusat(central location),dimana semuanya rehubung ke suatu alat yg dinamakan hub

Keuntungan Topologi star

Cukup mudah untuk mengubah dan menambah computer kedalam jaringan yg menggunakan topologi star tanpa mengganggu aktivitas jaringan yg sedang berkangsung.Pusat dari jaringan star merupakan tempat yg baik untuk menentukan diagnosa kesalahan yg terjadi dalam jaringan.Kita dapat memakai beberapa tipe kabel didalam jaringan yg sama dg hub yg dapat mengakomodasi tipe kabel yg berbeda

Kekurangan Topologi star

Memepunyai satu titik kesalahan,terletak pd hub.Jika hub pusat mengalami kegagalan,maka seluruh jaringan akan gagal beroperasi.memerlukan alat pd central poin untuk membroadcast ulang ppergantian traffic jaringan (switch network traffic).

Topologi Mesh

Topologi Mesh adalah suatu bentuk hubungan antar perangkat,dimana perangkat terhubung secara langsung ke perangkat lainya yg ada didalam jaringan.Akibatnya,dalam topologi ini setiap perangkat dapat berlomunikasi langsung dgn parangkat yg dituju(dedicated links)

Keuntungan Topologi Mesh

Memiliki sifat Robust,yaitu apabila terjadi gangguan pada koneksi computer A dgn computer B karena ruasaknya kabel koneksi(links).Memudahkan proses identifikasi permasakahan pd saat terjadi kerusakan koneksi pd computer.

Kekurangan Topologi Mesh

Membutuhkan banyak kabel dan Port I/o.Semakin banyk computer didalam topologi mesh mk di[erlukan semakin banyak kabel links dan port I/O.Hal tersebut sekaligus jg mengindisikasikan bahwa topologi jenis ini membutuhkan biaya yg relative mahal.Karena setiap computer harus terkoneksi secara langsung dgn computer kainya mk instalasi dan konfigurasi menjadi sulit.

virus

Virus

Virus Selsema

Virus HIV



Virus H1N1

Network Topology

Network Topology

Network topology is defined as the interconnection of the various elements (links, nodes, etc.) of a computer network.[1][2] Network Topologies can be physical or logical. Physical Topology means the physical design of a network including the devices, location and cable installation. Logical topology refers to the fact that how data actually transfers in a network as opposed to its physical design.

Topology can be considered as a virtual shape or structure of a network. This shape actually does not correspond to the actual physical design of the devices on the computer network. The computers on the home network can be arranged in a circle shape but it does not necessarily mean that it presents a ring topology.

Any particular network topology is determined only by the graphical mapping of the configuration of physical and/or logical connections between nodes. The study of network topology uses graph theory. Distances between nodes, physical interconnections, transmission rates, and/or signal types may differ in two networks and yet their topologies may be identical.

A Local Area Network (LAN) is one example of a network that exhibits both a physical topology and a logical topology. Any given node in the LAN has one or more links to one or more nodes in the network and the mapping of these links and nodes in a graph results in a geometrical shape that may be used to describe the physical topology of the network. Likewise, the mapping of the data flow between the nodes in the network determines the logical topology of the network. The physical and logical topologies may or may not be identical in any particular network.

Diagram of different network topologies

Basic topology types

The study of network topology recognizes five basic topologies:

  • Bus topology
  • Star topology
  • Ring topology
  • Tree topology
  • Mesh topology
Bus
In local area networks where bus topology is used, each machine is connected to a single cable. Each computer or server is connected to the single bus cable through some kind of connector. A terminator is required at each end of the bus cable to pr ev ent the signal from bouncing back and forth on the bus cable. A signal from the source travels in both directions to all machines connected on the bus cable until it finds the MAC add ress or IP address on the network that is the intended recipient. If the machine address does not match the intended address for the data, the machine ignores the data. Alternatively, if the data doe s match the machine address, the data is accepted. Sinc e the bus topology consists of only one wire, it is rather inexpensive to implement when compared t o other topologies. However, the low cost of implementing the technol ogy is offse t by the high cost of managing the network. Additionally, since only one cable is utilized, it can be the single point of failure. If the netw ork cable breaks, the e ntire network will be down.

Bus network topology

Star

In local area networks with a star topology, each network host is connected to a central hub. In contrast to the bus topology, the star topology connect s ea ch node to the hub with a point-to-point connection. All traffic that transverses the ne twork passes through the central hub. The hub acts as a signal booster or repeater. The star topology is considered the easiest topology to design and implement. An advantage of the star top ology is the simplicity of adding additional nodes. The primary disadvantage of the star topology is that the hub represents a single

Star network topology



Ring

In local area networks where the ring topology is used, each computer is connected to the network in a closed loop or ring. Each machine or computer has a unique address that is used for identification purposes. The signal passes throug h e ach machine or computer connected to the ring in one direction. Ring topologies typically utili ze a token passing scheme, used to control access to the network. By utilizing this scheme, only one machine can transmit on the network at a time. The machines or computers connected to the ring act as signal boosters or repeaters which strengthen the signals that transverse the network. The primary disadvantage of ring topology is the failure of one machine will cause the entire network to fail.[citation needed]

Ring network topology

Tree
Also known as a hierarchical network.

The type of network topology in which a central 'root' node (the top level of the hierarchy) is connected to one or more other nodes that are one level lower in the hierarchy (i.e., the second level) with a point-to-point link between each of the

second level nodes and the top level central 'root' node, while each of the second level nodes that are connected to the top level central 'root' node will also have one or more other nodes that are o

ne level lower in the hierarchy (i.e., the third level) connected to it, also with a point-to-point link, the top level central 'root' node being the only node tha

t has no other node above it in the hierarchy (The hierarchy of the tree is symmetrical.) Each node in the network having a specific fixed number, of nodes connected to it at the next lower l

evel in the hierarchy, the number, being referred to as the 'branching factor' of the hierarchical tree.

Tree network topology


Mesh

The value of fully meshed networks is proportional to the exponent of the number of subscribers, assuming that communicating groups of any

two endpoints, up to and including all the endpoints, is approximated by Reed's Law.

Partially connected mesh topology

Fully connected mesh topology

Network Architecture

Network architecture is the design of a communications network. It is a framework for the specification of a network's physical components and their functional organization and configuration, its operational principles and procedures, as well as data formats used in its operation.
In computing, the network architecture is a characteristics of a computer network. The most prominent architecture today is evident in the framework of the Internet, which is based on the Internet Protocol Suite.
In telecommunication, the specification of a network architecture may also include a detailed description of products and services delivered via a communications network, as well as detailed rate and billing structures under which services are compensated.
In distinct usage in distributed computing, network architecture is also sometimes used as a synonym for the structure and classification of distributed application architecture, as the participating nodes in a distributed application are often referred to as a network. For example, the applications architecture of the public switched telephone network (PSTN) has been termed the Advanced Intelligent Network. There are any number of specific classifications but all lie on a continuum between the dumb network (e.g., Internet) and the intelligent computer network (e.g., the telephone network). Other networks contain various elements of these two classical types to make them suitable for various types of applications. Recently the context aware network, which is a synthesis of the two, has gained much interest with its ability to combine the best elements of both.

Wednesday, May 5, 2010

Computer data storage

Computer data storage, often called storage or memory, refers to computer components, devices, and recording media that retain digital data used for computing for some interval of time. Computer data storage provides one of the core functions of the modern computer, that of information retention. It is one of the fundamental components of all modern computers, and coupled with a central processing unit (CPU, a processor), implements the basic computer model used since the 1940s.

In contemporary usage, memory usually refers to a form of semiconductor storage known asrandom-access memory (RAM) and sometimes other forms of fast but temporary storage. Similarly, storage today more commonly refers to mass storageoptical discs, forms ofmagnetic storage like hard disk drives, and other types slower than RAM, but of a more permanent nature. Historically, memory and storage were respectively called main memory andsecondary storage. The terms internal memory and external memory are also used.


The contemporary distinctions are helpful, because they are also fundamental to the architecture of computers in general. The distinctions also reflect an important and significant technical difference between memory and mass storage devices, which has been blurred by the historical usage of the term storage. Nevertheless, this article uses the traditional nomenclature.

Contents

[hide]

[edit]Purpose of storage

Many different forms of storage, based on various natural phenomena, have been invented. So far, no practical universal storage medium exists, and all forms of storage have some drawbacks. Therefore a computer system usually contains several kinds of storage, each with an individual purpose.

A digital computer represents data using the binary numeral system. Text, numbers, pictures, audio, and nearly any other form of information can be converted into a string of bits, or binary digits, each of which has a value of 1 or 0. The most common unit of storage is the byte, equal to 8 bits. A piece of information can be handled by any computer whose storage space is large enough to accommodate the binary representation of the piece of information, or simply data. For example, using eight million bits, or about one megabyte, a typical computer could store a short novel.

Traditionally the most important part of every computer is the central processing unit (CPU, or simply a processor), because it actually operates on data, performs any calculations, and controls all the other components.

Without a significant amount of memory, a computer would merely be able to perform fixed operations and immediately output the result. It would have to be reconfigured to change its behavior. This is acceptable for devices such as desk calculators or simple digital signal processors. Von Neumann machines differ in that they have a memory in which they store their operating instructions and data. Such computers are more versatile in that they do not need to have their hardware reconfigured for each new program, but can simply bereprogrammed with new in-memory instructions; they also tend to be simpler to design, in that a relatively simple processor may keep statebetween successive computations to build up complex procedural results. Most modern computers are von Neumann machines.

In practice, almost all computers use a variety of memory types, organized in a storage hierarchy around the CPU, as a trade-off between performance and cost. Generally, the lower a storage is in the hierarchy, the lesser its bandwidth and the greater its access latency is from the CPU. This traditional division of storage to primary, secondary, tertiary and off-line storage is also guided by cost per bit.

[edit]Hierarchy of storage

Various forms of storage, divided according to their distance from the central processing unit. The fundamental components of a general-purpose computer are arithmetic and logic unit, control circuitry, storage space, and input/output devices. Technology and capacity as in common home computers around 2005.

[edit]Primary storage

Direct links to this section: Primary storage, Main memory, Internal Memory.

Primary storage (or main memory or internal memory), often referred to simply as memory, is the only one directly accessible to the CPU. The CPU continuously reads instructions stored there and executes them as required. Any data actively operated on is also stored there in uniform manner.

Historically, early computers used delay lines, Williams tubes, or rotatingmagnetic drums as primary storage. By 1954, those unreliable methods were mostly replaced by magnetic core memory, which was still rather cumbersome. Undoubtedly, a revolution was started with the invention of atransistor, that soon enabled then-unbelievable miniaturization of electronic memory via solid-state silicon chip technology.

This led to a modern random-access memory (RAM). It is small-sized, light, but quite expensive at the same time. (The particular types of RAM used for primary storage are also volatile, i.e. they lose the information when not powered).

As shown in the diagram, traditionally there are two more sub-layers of the primary storage, besides main large-capacity RAM:

  • Processor registers are located inside the processor. Each register typically holds a word of data (often 32 or 64 bits). CPU instructions instruct the arithmetic and logic unit to perform various calculations or other operations on this data (or with the help of it). Registers are technically among the fastest of all forms of computer data storage.
  • Processor cache is an intermediate stage between ultra-fast registers and much slower main memory. It's introduced solely to increase performance of the computer. Most actively used information in the main memory is just duplicated in the cache memory, which is faster, but of much lesser capacity. On the other hand it is much slower, but much larger than processor registers. Multi-level hierarchical cache setup is also commonly used—primary cache being smallest, fastest and located inside the processor; secondary cache being somewhat larger and slower.

Main memory is directly or indirectly connected to the central processing unit via a memory bus. It is actually two buses (not on the diagram): an address bus and a data bus. The CPU firstly sends a number through an address bus, a number called memory address, that indicates the desired location of data. Then it reads or writes the data itself using the data bus. Additionally, a memory management unit (MMU) is a small device between CPU and RAM recalculating the actual memory address, for example to provide an abstraction of virtual memory or other tasks.

As the RAM types used for primary storage are volatile (cleared at start up), a computer containing only such storage would not have a source to read instructions from, in order to start the computer. Hence, non-volatile primary storage containing a small startup program (BIOS) is used to bootstrap the computer, that is, to read a larger program from non-volatile secondary storage to RAM and start to execute it. A non-volatile technology used for this purpose is called ROM, for read-only memory (the terminology may be somewhat confusing as most ROM types are also capable of random access).

Many types of "ROM" are not literally read only, as updates are possible; however it is slow and memory must be erased in large portions before it can be re-written. Some embedded systems run programs directly from ROM (or similar), because such programs are rarely changed. Standard computers do not store non-rudimentary programs in ROM, rather use large capacities of secondary storage, which is non-volatile as well, and not as costly.

Recently, primary storage and secondary storage in some uses refer to what was historically called, respectively, secondary storage andtertiary storage.[1]

[edit]Secondary storage

A hard disk drive with protective cover removed.

Secondary storage (or external memory) differs from primary storage in that it is not directly accessible by the CPU. The computer usually uses its input/output channels to access secondary storage and transfers the desired data using intermediate area in primary storage. Secondary storage does not lose the data when the device is powered down—it is non-volatile. Per unit, it is typically also two orders of magnitude less expensive than primary storage. Consequently, modern computer systems typically have two orders of magnitude more secondary storage than primary storage and data is kept for a longer time there.

In modern computers, hard disk drives are usually used as secondary storage. The time taken to access a given byte of information stored on a hard disk is typically a few thousandths of a second, or milliseconds. By contrast, the time taken to access a given byte of information stored in random access memory is measured in billionths of a second, or nanoseconds. This illustrates the very significant access-time difference which distinguishes solid-state memory from rotating magnetic storage devices: hard disks are typically about a million times slower than memory. Rotating optical storage devices, such as CD and DVD drives, have even longer access times. With disk drives, once the disk read/write head reaches the proper placement and the data of interest rotates under it, subsequent data on the track are very fast to access. As a result, in order to hide the initial seek time and rotational latency, data are transferred to and from disks in large contiguous blocks.

When data reside on disk, block access to hide latency offers a ray of hope in designing efficient external memory algorithms. Sequential or block access on disks is orders of magnitude faster than random access, and many sophisticated paradigms have been developed to design efficient algorithms based upon sequential and block access . Another way to reduce the I/O bottleneck is to use multiple disks in parallel in order to increase the bandwidth between primary and secondary memory.[2]

Some other examples of secondary storage technologies are: flash memory (e.g. USB flash drives or keys), floppy disks, magnetic tape, paper tape, punched cards, standalone RAM disks, and Iomega Zip drives.

The secondary storage is often formatted according to a file system format, which provides the abstraction necessary to organize data into filesand directories, providing also additional information (called metadata) describing the owner of a certain file, the access time, the access permissions, and other information.

Most computer operating systems use the concept of virtual memory, allowing utilization of more primary storage capacity than is physically available in the system. As the primary memory fills up, the system moves the least-used chunks (pages) to secondary storage devices (to aswap file or page file), retrieving them later when they are needed. As more of these retrievals from slower secondary storage are necessary, the more the overall system performance is degraded.

[edit]Tertiary storage

Large tape library. Tape cartridges placed on shelves in the front, robotic arm moving in the back. Visible height of the library is about 180 cm.

Tertiary storage or tertiary memory,[3] provides a third level of storage. Typically it involves a robotic mechanism which will mount (insert) and dismount removable mass storage media into a storage device according to the system's demands; this data is often copied to secondary storage before use. It is primarily used for archival of rarely accessed information since it is much slower than secondary storage (e.g. 5–60 seconds vs. 1-10 milliseconds). This is primarily useful for extraordinarily large data stores, accessed without human operators. Typical examples include tape libraries and optical jukeboxes.

When a computer needs to read information from the tertiary storage, it will first consult a catalogdatabase to determine which tape or disc contains the information. Next, the computer will instruct arobotic arm to fetch the medium and place it in a drive. When the computer has finished reading the information, the robotic arm will return the medium to its place in the library.

[edit]Off-line storage

Off-line storage is a computer data storage on a medium or a device that is not under the control of a processing unit.[4] The medium is recorded, usually in a secondary or tertiary storage device, and then physically removed or disconnected. It must be inserted or connected by a human operator before a computer can access it again. Unlike tertiary storage, it cannot be accessed without human interaction.

Off-line storage is used to transfer information, since the detached medium can be easily physically transported. Additionally, in case a disaster, for example a fire, destroys the original data, a medium in a remote location will probably be unaffected, enabling disaster recovery. Off-line storage increases general information security, since it is physically inaccessible from a computer, and data confidentiality or integrity cannot be affected by computer-based attack techniques. Also, if the information stored for archival purposes is accessed seldom or never, off-line storage is less expensive than tertiary storage.

In modern personal computers, most secondary and tertiary storage media are also used for off-line storage. Optical discs and flash memory devices are most popular, and to much lesser extent removable hard disk drives. In enterprise uses, magnetic tape is predominant. Older examples are floppy disks, Zip disks, or punched cards.

[edit]Characteristics of storage

A 1GB DDR RAM memory module

Storage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressibility. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.

[edit]Volatility

Non-volatile memory
Will retain the stored information even if it is not constantly supplied with electric power. It is suitable for long-term storage of information. Nowadays used for most of secondary, tertiary, and off-line storage. In 1950s and 1960s, it was also used for primary storage, in the form of magnetic core memory.
Volatile memory
Requires constant power to maintain the stored information. The fastest memory technologies of today are volatile ones (not a universal rule). Since primary storage is required to be very fast, it predominantly uses volatile memory.

[edit]Differentiation

Dynamic random access memory
A form of volatile memory which also requires the stored information to be periodically re-read and re-written, or refreshed, otherwise it would vanish.
Static memory
A form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied. (It loses its content if power is removed).

[edit]Mutability

Read/write storage or mutable storage
Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.
Read only storage
Retains the information stored at the time of manufacture, and write once storage (Write Once Read Many) allows the information to be written only once at some point after manufacture. These are called immutable storage. Immutable storage is used for tertiary and off-line storage. Examples include CD-ROM and CD-R.
Slow write, fast read storage
Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and flash memory.

[edit]Accessibility

Random access
Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage.
Sequential access
The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.

[edit]Addressability

Location-addressable
Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.
File addressable
Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.
Content-addressable
Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.

[edit]Capacity

Raw capacity
The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4megabytes).
Memory storage density
The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).

[edit]Performance

Latency
The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage,millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency, and in case of sequential access storage, minimum, maximum and average latency.
Throughput
The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second or MB/s, though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.

[edit]Environmental Impact

The impact of a storage device on the environment.

Energy
  • Energy Star certified power adapters for storage devices reduce power consumption 30 percent on average[5]
  • Storage devices that reduce fan usage, automatically shut-down during inactivity, and low power hard drives can reduce energy consumption 90 percent. [6]
  • 2.5 inch hard disk drives often consume less power than larger ones.[7][8] Low capacity solid-state drives have no moving parts and consume less power than hard disks.[9][10][11] Also, memory may use more power than hard disks.[11]
Recycling
  • Some devices are made of recyclable materials like aluminum, bamboo, or plastics
  • Easily disassembled devices are easier to recycle if only certain parts are recyclable
  • Packaging may be recyclable and some companies print instructions on the box or use recyclable paper for the instructions instead of waxed paper
Manufacturing
  • The amount of raw materials (metals, aluminum, plastics, lead) used to manufacture the device
  • Excess waste materials and if they are recycled
  • Chemicals used in manufacturing
  • Shipping distance for the device itself and parts
  • Amount of packaging materials and if they are recyclable

[edit]Fundamental storage technologies

As of 2008, the most commonly used data storage technologies are semiconductor, magnetic, and optical, while paper still sees some limited usage. Some other fundamental storage technologies have also been used in the past or are proposed for development.

[edit]Semiconductor

Semiconductor memory uses semiconductor-based integrated circuits to store information. A semiconductor memory chip may contain millions of tiny transistors or capacitors. Both volatile and non-volatile forms of semiconductor memory exist. In modern computers, primary storage almost exclusively consists of dynamic volatile semiconductor memory or dynamic random access memory. Since the turn of the century, a type of non-volatile semiconductor memory known as flash memory has steadily gained share as off-line storage for home computers. Non-volatile semiconductor memory is also used for secondary storage in various advanced electronic devices and specialized computers.

[edit]Magnetic

Magnetic storage uses different patterns of magnetization on a magnetically coated surface to store information. Magnetic storage is non-volatile. The information is accessed using one or more read/write heads which may contain one or more recording transducers. A read/write head only covers a part of the surface so that the head or medium or both must be moved relative to another in order to access data. In modern computers, magnetic storage will take these forms:

In early computers, magnetic storage was also used for primary storage in a form of magnetic drum, or core memory, core rope memory, thin-film memory, twistor memory or bubble memory. Also unlike today, magnetic tape was often used for secondary storage.

[edit]Optical

Optical storage, the typical Optical disc, stores information in deformities on the surface of a circular disc and reads this information by illuminating the surface with a laser diode and observing the reflection. Optical disc storage is non-volatile. The deformities may be permanent (read only media ), formed once (write once media) or reversible (recordable or read/write media). The following forms are currently in common use:[12]

Magneto-optical disc storage is optical disc storage where the magnetic state on a ferromagnetic surface stores information. The information is read optically and written by combining magnetic and optical methods. Magneto-optical disc storage is non-volatile, sequential access, slow write, fast read storage used for tertiary and off-line storage.

3D optical data storage has also been proposed.

[edit]Paper

Paper data storage, typically in the form of paper tape or punched cards, has long been used to store information for automatic processing, particularly before general-purpose computers existed. Information was recorded by punching holes into the paper or cardboard medium and was read mechanically (or later optically) to determine whether a particular location on the medium was solid or contained a hole. A few technologies allow people to make marks on paper that are easily read by machine—these are widely used for tabulating votes and grading standardized tests. Barcodes made it possible for any object that was to be sold or transported to have some computer readable information securely attached to it.

[edit]Uncommon

Vacuum tube memory
A Williams tube used a cathode ray tube, and a Selectron tube used a large vacuum tube to store information. These primary storage devices were short-lived in the market, since Williams tube was unreliable and Selectron tube was expensive.
Electro-acoustic memory
Delay line memory used sound waves in a substance such as mercury to store information. Delay line memory was dynamic volatile, cycle sequential read/write storage, and was used for primary storage.
Optical tape
is a medium for optical storage generally consisting of a long and narrow strip of plastic onto which patterns can be written and from which the patterns can be read back. It shares some technologies with cinema film stock and optical discs, but is compatible with neither. The motivation behind developing this technology was the possibility of far greater storage capacities than either magnetic tape or optical discs.
Phase-change memory
uses different mechanical phases of Phase Change Material to store information in an X-Y addressable matrix, and reads the information by observing the varying electrical resistance of the material. Phase-change memory would be non-volatile, random access read/write storage, and might be used for primary, secondary and off-line storage. Most rewritable and many write once optical disks already use phase change material to store information.
Holographic data storage
stores information optically inside crystals or photopolymers. Holographic storage can utilize the whole volume of the storage medium, unlike optical disc storage which is limited to a small number of surface layers. Holographic storage would be non-volatile, sequential access, and either write once or read/write storage. It might be used for secondary and off-line storage. See Holographic Versatile Disc(HVD).
Molecular memory
stores information in polymers that can store electric charge. Molecular memory might be especially suited for primary storage. The theoretical storage capacity of molecular memory is 10 terabits per square inch. [13]

[edit]Related technologies

[edit]Network connectivity

A secondary or tertiary storage may connect to a computer utilizing computer networks. This concept does not pertain to the primary storage, which is shared between multiple processors in a much lesser degree.

  • Direct-attached storage (DAS) is a traditional mass storage, that does not use any network. This is still a most popular approach. This term was coined lately, together with NAS and SAN.
  • Network-attached storage (NAS) is mass storage attached to a computer which another computer can access at file level over a local area network, a private wide area network, or in the case of online file storage, over the Internet. NAS is commonly associated with the NFSand CIFS/SMB protocols.
  • Storage area network (SAN) is a specialized network, that provides other computers with storage capacity. The crucial difference between NAS and SAN is the former presents and manages file systems to client computers, whilst the latter provides access at block-addressing (raw) level, leaving it to attaching systems to manage data or file systems within the provided capacity. SAN is commonly associated withFibre Channel networks.

[edit]Robotic storage

Large quantities of individual magnetic tapes, and optical or magneto-optical discs may be stored in robotic tertiary storage devices. In tape storage field they are known as tape libraries, and in optical storage field optical jukeboxes, or optical disk libraries per analogy. Smallest forms of either technology containing just one drive device are referred to as autoloaders or autochangers.

Robotic-access storage devices may have a number of slots, each holding individual media, and usually one or more picking robots that traverse the slots and load media to built-in drives. The arrangement of the slots and picking devices affects performance. Important characteristics of such storage are possible expansion options: adding slots, modules, drives, robots. Tape libraries may have from 10 to more than 100,000 slots, and provide terabytes or petabytes of near-line information. Optical jukeboxes are somewhat smaller solutions, up to 1,000 slots.

Robotic storage is used for backups, and for high-capacity archives in imaging, medical, and video industries. Hierarchical storage managementis a most known archiving strategy of automatically migrating long-unused files from fast hard disk storage to libraries or jukeboxes. If the files are needed, they are retrieved back to disk.

[edit]See also

[edit]Primary storage topics

[edit]Secondary, tertiary and off-line storage topics

[edit]Data storage conferences